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USING APPROXIMATIONS TO ACCELERATE ENGINEERING DESIGN

OPTIMIZATION*

VIRGINIA TORCZON t AND MICHAEL W. TROSSET :t

Abstract. Optimization problems that arise in engineering design arc often characterized by several

features that hinder the use of standard nonlinear optimization techniques. Foremost among these features

is that the functions used to define the engineering optimization problem often are computationally intensive.

Within a standard nonlinear optimization algorithm, the computational expense of evaluating the functions

that define the problem would necessarily be incurred for each iteration of the optimization algorithm.

Faced with such prohibitive computational costs, an attractive alternative is to make use of surrogates

within an optimization context since surrogates can be chosen or constructed so that they are typically

much less expensive to compute. For the purposes of this paper, we will focus on the use of algebraic

approximations as surrogates for the objective.

In this paper we introduce the use of so-called merit functions that explicitly recognize the desirability

of improving the current approximation to the objective during the course of the optimization. We define

and experiment with the use of merit functions chosen to simultaneously improve both the solution to the

optimization problem (the objective) and the quality of the approximation. Our goal is to further improve

the effectiveness of our general approach without sacrificing any of its rigor.

Key words, design optimization, computer simulation, pattern search, kriging, nonparametric response

surface methodology.

Subject classification. Applied & NumericM Mathematics

1. Introduction. The presentation that follows is intended to illustrate that global approximations

can be helpful in facilitating optimization. We present several simple examples, selected to illustrate two

fundamental perspectives that have guided our recent research:

• When one uses algebraic approximations within an iterative optimization framework, the initial

stages of the optimization should concentrate on the predictive ability of the approximation. The

accuracy of the approximation should be a concern only when in the vicinity of a minimizer or

when it becomes clear that the approximation is not doing a good job of identifying trends in the

objective.

• It is desirable to compromise between the single-minded pursuit of a minimizer and the construction

of an approximation that gives a reasonable "picture" of the behavior of the objective particularly

when a problem is known to have many local minimizers.

Neither of these observations is unique to us; however, they motivate us to introduce merit functions

that explicitly recognize the desirability of improving the current approximation to the expensive simulation
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in certain regions. In other words, we introduce a criterion that balances the expenditure of expensive

evaluations of the objective function between the search for a single minimizer and the desire to learn more

about the the behavior of the objective.

1.1. Problem. For the sake of the points we wish to make, we concentrate on the following general

expression for the design optimization problem:

minimize f (x )

subject to x E [g, u],

where x E [e, u] denotes that every component of the p-dimensional vector x is greater than or equal to the

corresponding component in g and less than or equal to the corresponding component in u (i.e., there are

bounds on all the design or decision variables x).

We cannot guarantee a global minimizer for the objective_the computational cost associated with such a

guarantee would be too prohibitive. What we intend, instead, is an approach that is less prone to identifying

the "nearest" local minimizer with the hope that this will often lead us to a global minimizer.

1.2. Operating Assumptions. We make two fundamental assumptions about the design problem:

• Evaluation of the objective depends on the output of complicated computer simulations involving

large numbers of state or system variables; it is not a simple algebraic expression exclusively in

terms of the design variables x.

• The objective is expensive to compute because the simulations upon which its value is based are

cxpensive to compute. (Though the strategy we outline is amenable to settings where the evaluation

of the objective may be expensive for other reasons).

1.3. Consequences. The consequences of these assumptions are:

• Simulations of complex physical processes can lead to

- nonstochastic errors in the evaluation of the objective due to the approximation, rounding, and

truncation introduced by the simulations; and

- high-frequency, low-amplitude distortions of thc "true" value of the objective,

features which can cause difficulties for higher-order optimization methods.

• We must be frugal in our evaluation of the objective.

1.4. Goals. Within this setting, we set forth the following goals. Given a modest number of evaluations

of the objective (a "budget") produce:

1. A better "picture" of the behavior of the objective in the region(s) of interest.

2. Do so in a way that is guaranteed--in theory to converge to at least a local constrained stationary

point of the objective.

With a limited number of objective evaluations, it may not be possible to ensure convergence to a constrained

stationary point of the objective, but satisfying the conditions required by the theory provides some assurance

that this is a sensible approach to the design optimization problem.

We start with the following simple, but fundamental idea: use a sequence of surrogate objectives to

predict optimal design candidates.

We do so because we wish to concentrate on the predictive ability of the surrogate and concern ourselves

with accuracy only in the vicinity of a minimizer.
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2. Optimization Using Approximations. We begin by noting that our basic strategy should work

with any type of surrogate for the objective. We distinguish between models and approximations.

Surrogate models are auxiliary simulations that are less physically faithful, but also less computationally

expensive, than the expensive simulations that are regarded as "truth." An instructive example is the use

of an equivalent-plate analysis method in lieu of a finite element analysis, e.g., to analyze a wing-box of a

high-speed civil transport [4]. Surrogate models exist independently of the expensive simulation and can

provide new information about the physical phenomenon of interest without requiring additional runs of the

expensive simulation.

Surrogate approximations are algebraic summaries obtained from previous runs of the expensive simula-

tion. Examples include the low-order polynomials favored in response surface mcthodology (RSM) [14] and

the kriging estimates employed in the design and analysis of computer experiments (DACE) [23, 1]. Once

the approximation has been constructed, it is typically inexpensive to evaluate.

We consider a methodology that constructs a sequence of approximations to the objective. We concen-

trate on approaches such as DACE, that krige known values of the objective, but our general strategy is also

amenable to other classes of approximations. We make use of pattern search techniques [18, 17] to handle

the optimization, though other approaches are possible. We choose pattern search techniques because they

can be easily amended to exploit surrogates, can handle functions that are nondiffcrentiable or for which

sensitivities are difficult or too expensive to attain, and can be easily adapted to either a parallel or dis-

tributed computing environment. Pattern search methods also are less likely to bc trapped by non-global

minimizers than are traditional nonlinear optimization algorithms. Furthermore, recent analysis extends

their applicability to optimization problems with general nonlinear constraints [9].

Our approach [21] synthesizes recent ideas from both the numerical optimization and the computer

experiments literature. Given a limited budget of expensive function evaluations that are to be used to

solve an engineering optimization problem, we consider how to manage the trade-off between the expense of

approximation and the expense of optimization. We believe that one should invest only a modest proportion

of the original budget in constructing the initial approximation and that one should use the optimization

procedure to help decide when and where further sampling should occur.

2.1. Basic Strategy. We now outline the basic strategy we will use:

1. Choose:

(a) an initial grid over the feasible region [e, u] that signifies the degree of resolution desired (this

can be refined later, as deemed appropriate) and

(b) an initial baseline design xc C [_, u] at which f is known.

2. Perform an initial computer experiment:

(a) select N initial design sites,

(b) evaluate the true objective f at the initial design sites, and

(c) construct an initial approximation a of f based on the objective values obtained at the design

sites.

3. Do until a minimizer of f has been confirmed (for the current resolution of the grid) or until the

"budget" V of evaluations has been exhausted:

(a) find a candidate xt that minimizes a on the grid and treat xt as a site at which a predicts a

minimizer for f on the grid.

Evaluate f(xt).

(b) Update the approximation a to include the objective value f(xt).



(c) If f(x_) < f(xc), then lct xc ----x_. Else leave xc unchangcd.

(d) Repeat Step 3.

2.2. Remarks on the Basic Strategy. There are numerous remarks to be made regarding this basic

strategy.

First, we use the grid to ensure the procedure is robust; with additional refinements of the grid, we

are assured that asymptotically the sequence of designs Xc converges to a constrained stationary point of f

under certain mild assumptions [10, 11, 16]. Furthermore, ours is a feasible point method since it has been

our experience that simulations often will fail at infeasible points- and still may fail at feasible points [2, 3].

Any feasible xc may be chosen to start the search and only feasible candidates xt will be considered.

We can use any of a wide variety of approximation techniques. We favor those that are amenable

to updates; in particular, we use the kriging techniques favored in the design and analysis of computer

experiments (DACE) literature [23] because these are the approximation techniques with which we have

some experience. For simplicity, we use cubic splines for the illustrative examples that follow. (We note

that spline interpolation is mathematically equivalent to kriging. See, for example, [22].) The interpolatory

approximations we have favored to date allow us to incorporate the new objective values f(xt) obtained

during the course of the optimization in a straightforward fashion, though we will have more to say about

potential difficulties.

We also can use any of a wide variety of optimization methods to produce a candidate xt. Wc have used

both quasi-Newton methods [21] and pattern search methods [3] to find a candidate xt. For simplicity we

use the "eyeball" method for the examples that follow. Again we stress that we insist on a candidate xt that

is on the grid to ensure convergence to a stationary point of f.

The convergence theory requires strict improvement of f at xc to prevent "cycling." We seek to confirm

x_ is a local stationary point of f at the current resolution of the grid by evaluating f at the 2p adjacent grid

points defined by the positive and negative coordinate directions. Again, this point should be made clearer

in the examples that follow.

3. Simple Examples. We show some simple one-dimensional examples for illustrative purposes. In

the sequence of graphs that display our results, the objective f is indicated using a solid line while the

approximation a is indicated using a dashed line. The grid upon which wc are operating is shown in "hatch"

marks along the x-axis. The points at which f(x) is known are denoted with open circles.

When we have only two known points (which is what we use in the initial experimental design) we build

a simplc linear interpolant. We distinguish these two initial design sites by including a + mark in the open

circle. When we have three known points (after the first optimization step), we build a quadratic interpolant.

For subsequent iterations, we use a cubic spline interpolant [12], which for the one-dimensional examples we

show requires a minimum of four data points.

The candidate xt for which the approximation a predicts decrease in f- and at which we will evaluate

f before proceeding is denoted with a star. When the approximation does not predict any further decrease

in f, the star indicates the point at which we will evaluate f (if unknown) to confirm that x_ is a local

stationary point of f on the grid.

One word of warning: the graphs that follow were generated using Matlab. The sequence of graphs

presented have been scaled by Matlab to best portray the range of values specific to that particular graph;

thus, different scales for the y-axis are used for different graphs to capture the changing features of the

interpolant as additional points are added. (The scale of the x-axis remains constant for each example.)
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3.1. First Example. We start with the following simple example:

minimize f(x) = e-2Zsin(lOTrx)

subject to x E [0,0.5],

Applying the basic strategy outlined above, we obtain the following sequence of iterations:
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Consider the sequence of proposed solutions using the interpolation coupled with the optimization, as

shown in Table 3.1. We denote by xc the current best solution for the "true" problem f(x) and by xt the

"triM" solution proposed by the approximation a. Alternatively (as we see at the end of the process), xt

may be a "confirmation point" if the approximation suggests that a minimizer has already been identified.

So, for instance, at Iteration 7, we know that the function increases from the value at xc = 0.150 if we move

immediately to the right (to 0.167), but we have not yet ascertained if further decrease is possible if we

move immediately to the left (to 0.133). Thus, we evaluate f at 0.133 to "confirm" that 0.150 is a (local)

minimizer.

Iteration xc xt

1 0.167 0.000

2 0.167 0.217

3 0.167 0.500

4 0.167 0.067

5 0.167 0.433

6 0.167 0.150

7 0.150 0.133

8 0.150

TABLE 3.1

Sequence of iterates and trial points for the first example

Note that while the approximation a is poor, we do not realize any improvement on f; the best solution

to the problem of minimizing f is the one identified by one of the two initial sites for sampling f to construct a

linear interpolant. But by Iteration 6, the approximation has identified the minimizer. Iteration 7 confirms

that the candidate improves upon the current solution for f and, in fact, gives a global solution for the

approximation a. Thus, we are left to confirm that this candidate is indeed a minimizer for f. To confirm

this, we need the value of the true objective f at the two adjacent grid points. We already have computed

the value of f at x = 0.167, so what remains is to compute the value of f at x -- 0.133.
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At Iteration 8 we stop with a confirmed (local) minimizer of f (at least to the resolution of the grid) at

x. = 0.150 and a decent approximation a to our objective f on the interval [0, 0.5].

Before moving on to our next example, we note the following. It is often said that if a model of the

objective or a constraint function has a weakness, the optimization procedure will find it. Here we see the

same phenomenon using approximations of the objective. In the early stages of the optimization process,

the approximation predicts a minimizer in precisely those region(s) where wc have the least information

about the objective: consider Iterations 3, 4(and 5. But by using the iterative process, we can improve the

approximation with the eventual goal of using it to successfully predict a minimizer of f.

3.2. Second Example. Now to illustrate the main contribution of our proposal, wc will reconsider

the process with an objective function constructed to illustrate that our basic strategy, while provably ro-

bust enough to guarantee asymptotic convergence to a local minimizer, may not always produce a global

minimizer which is often the preferred solution. Consider the following sequence of iterations:
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Notice that when we are done we have a confirmed minimizer at 0.0 and our cubic spline approximation

is quite accurate in the neighborhood of the minimizer [-0.2, 0.167]. But the approximation is not accurate

in the region [0.167, 1.5]; it suggests that at best there is a local minimizer at either 1.2 or 1.3, when in fact

1.3 is the global minimizer for this function.

The reason we found the local minimizer (fairly quickly, as Table 3.2 shows) is a result of our initial

design for constructing an approximation. One of our two data points lies in the basin of attraction for the

local minimizer, while we have no data in the basin of attraction for the global minimizer.

The question then becomes, how to balance our desire to find a confirmed minimizer with our desire

to "know" enough about the objective to avoid missing a potentially better solution simply because the

approximation may not be sufficiently good to predict a better solution?

4. An Alternate Strategy. In the second example illustrated above, we reach a point in the opti-

mization process (Iteration 6) where the approximation suggests we have found a local minimizer of the

objective which happens to be a global minimizer of the current approximation. Using the simple strategy

with which we started, we then proceed to evaluate nearby points to confirm that wc have a local minimizer

of the objcctive. We ignore indications that there may be another (local) minimizer of the objective in the

region [0.833,1.5J--which happens to be a region where we know very little about the objective.

Instead of being so single-minded in our pursuit of a single minimizer, what if as an alternate search



Iteration xc x_

1 0.167 -0.500

2 0.167 0.100

3 0.100 1.500

4 0.100 -0.200

5 0.100 0.000

6 0.000 -0.100

7 0.000 --

TABLE 3.2

Sequence of iterates and trial points for the second example

strategy we search both in regions where the approximation indicates there might be a minimizer of the

objective and where we realize that we "know" very little about the objective? The question then becomes:

how do we formalize this notion?

What we propose is to combine these two goals into a single objective, which we refer to as a merit

function. The idea is to balance these two goals much as one does for a multiobjective optimization problem

or (possibly) as a way to handle constraint violations.

4.1. A Family of Merit Functions. One possibility is to use a merit function of the form:

where Pc _> 0 and

me(x) = at(x) - pcdc( ),

dc(x) = min fix- x, ll_,

where the minimum in dc is computed over all points xi at which we know the value of the true objective.

Thus, de(x) is the distance from x to the nearest previous design site.

The merit function mc comprises two components, ac and de. The approximation function ac plays the

same role as before: we want to minimize (or at least decrease) the value of a_ at x_ as a way of predicting

decrease on f(x_). The second function is an experimental design criterion that is intended to inhibit

clustering and thereby to ensure that the trial point is placed where information obtained from evaluating

the objective will be helpful. Many such criteria arc possible; ours is adapted from the maximin distance

design criterion proposed in [8].

A useful analogy for explaining the maximin design criterion is the problem of building a chain of

convenience stores. Regardless of how many stores one wishes to build, it is desirable to spread them around

the city in question. One natural possibility is to locate stores so as to maximize the shortest distance between

two stores. This is what is known as a maximin distance design. Although maximin designs are easily

computed in one dimension, they may be quite difficult to compute in many dimensions. Fortunately, one

can compute various approximate maximin designs using conventional nonlinear programming algorithms,

subject to the usual caveats about the possibility that such algorithms will find nonglobal solutions [19].

The maximin design criterion is an example of a sensible, space-filling design criterion. Of course, the

design space rarely is full in an absolute sense because typically only a relatively small number of design

sites are used. Rather the term space-filling is meant to indicate that the design sites are spread out and do

not cluster in one portion of the experimental region.



So how does the maximin design criterion figure into our merit function? By subtracting some positive

multiple of our maximin design criterion de, we are giving merit to designs that maximize the shortest

distance between two observations because a large value for dc(xt) will further decrease the value of mc(x_).

We still use the approximation a to predict candidate minimizers of the "true" objective f, but we now

weight our predictions based on how close we are to known information about the objective. Our choice of

Pc dictates how much emphasis we will place on learning more about the objective in regions for which we

have no samples versus emphasizing the rapid identification of a (local) minimizer. For the example that

follows, we have kept Pc constant, but this is a quantity that can be varied at each iteration and, in fact,

should eventually tend to zero in order to ensure convergence to a local solution.

4.2. Second Example Revisited. So how well does this work? The following sequence repeats our

second example but now uses me(x) (shown using a "dot-dash" line) to choose candidates to minimize the

objective. For this example, we used Pc = 3. (Thcre is no real motivation for this choice of Pc; it was the

first value tried and it happened to work particularly well for this example.)

i
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Again we consider the sequence of proposed solutions using our merit function coupled with the opti-

mization, shown in Table 4.1. As before, we denote by xc the current best solution for thc "true" problem

defined by f(x). But now xt is the solution proposed by the merit function rather than by the approximation.

Iteration xc xt

1 0.167 -0.500

2 0.167 0.500

3 0.167 1.500

4 0.167 -0.200

5 0.167 1.200

6 1.200 1.300

7 1.300 1.400

8 1.300

TABLE 4.1

Sequence of iterates and trial points/or the second example, using the merit function

Note how different the outcome now is. When we stop this time, we have a confirmed (to the scale of res-
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olution) minimizer of the objective which now happens to be the global minimizer and an approximation

that is qualitatively much better than the one we realized previously for this same objective function.

It is the case that because we now assign "merit" to sampling in regions for which we have no information

about the objective, wc are slower to improve the best known solution to the optimization problem. For this

example, xc is not replaced until Iteration 6 whereas, earlier, working only with the approximation a, we

replace xc by Iteration 3.

On the other hand, using the merit function rather than just the approximation- enforces a better

"spread" of the sample points throughout the design region. The beneficial effects of this are apparent

by Iteration 5. Earlier, when we did not make use of the merit function, with the exception of the two

end points, all our sampling occurred in the basin with a local minimizer at 0.0; thus, the behavior of the

objective in the rest of the design space is largely unknown. However, when we use the merit function to

select candidate designs, by Iteration 5 even the approximation indicates that a global minimizer should be

in the region near 1.2; the merit function only further emphasizes this prediction.

Note that the approximation a still predicts the local minimizer at 0.0 and the merit function empha-

sizes this prediction too. If we wished to search for other minimizers, we certainly have adequate predictive

ability to do so. But now the global minimizer dominates. Having identified it, we are content to stop.

4.3. Summary. Our illustrations are necessarily simple and the results that we obtained are better

than should be expected for more complicated problems. Nonetheless, we believe that two conclusions can

be drawn:

1. Global approximations can bc helpful in facilitating optimization.

2. There is merit in balancing the goal of finding minimizers of the current approximation against the

goal of constructing better approximations for future iterations.

Again, we stress that the latter observation is not unique to us. Recent work from the nonlinear

programming community [15, 5] has emphasized the need to monitor the "geometry" of the sample points

even when using them to build a local quadratic approximation to the objective -in particular, to avoid the

numerical ill-conditioning that can arise if such considerations are ignored. Furthermore, a standard theme

in global optimization [13, 7, 6] is the need to sample in regions where relatively little is known about the

objective in an effort to devise heuristics that-are more likely to produce global minimizers.

In higher dimensions, we are not sanguine that good approximations of the objective can be constructed

over the entire design region. The curse of dimensionality is likely to hold sway for all but the simplest

of objective functions. Nonetheless, we wish to avoid the tendency of most derivative-based optimization

techniques to find the local minimizer nearest the initial trial point used to start the optimization process.

Furthermore, by attempting to construct a global rather than a local approximation to the objective, we

can use such tools as analysis of variance (ANOVA) to discern other information about the objective either

before or after the optimization process.

4.4. Outstanding Issues. Of course, there is no such thing as a free lunch. In essence, we have turned

our original single objective problem (find a minimizer to the approximation a to predict a minimizer for the

objective f) into a biobjective problem (find a point that both improves on the value of the approximation

a and improves the quality of the approximation of the regions in which wc have not yet sampled to predict

a minimizer for the objective f). Once we do so, we raise the usual issues one finds in multiobjective

optimization: to wit, how to balance the two objectives in a sensible fashion. For now, we introduce the

parameter Pc and leave it to the user's control which would be considered a feature by some users and

burden by others.

12



There is also the issue of how to do the optimization on either the approximation a or the merit function m

to predict a candidate minimizer for the objective/. Obviously, the approximation is constructed so that it is

inexpensive to compute; otherwise, we would work directly with the objective. If the objective is particularly

expensive to computer, then we can afford to spend some time solving the "easier" optimization problem

posed by the approximation. Nonetheless, if we are interested in a global minimizer of the approximation,

finding such a minimizer becomes more problematic for all but the simplest problems in higher dimensions.

When we move to the family of merit functions we have proposed, the problem is necessarily compounded.

As the example should make clear, we necessarily introduce multiple local minimizers. Fortunately, the

special structure of the family of merit functions suggests specialized optimization techniques for identifying

potential minimizers--but this is a subject for ongoing research.

We are encouraged by our preliminary results, but there remains much work to be done to answer

the research questions raised and to help ascertain practical choices for the many options that face us and

guidelines to suggest to users as to when these approaches are likely to bc of most use.

5. Conclusions. There are now several encouraging reports of numerical experiments that commend

the sequential use of approximations when optimizing expensive objective functions [21, 16, 3]. We have

outlined the methodology that is common to these endeavors. More significantly, we have identified several

critical issues that inevitably arise when this methodology is implemented. This paper sets forth our current

thinking about how to address these issues. Our central theme is that, when using approximations to facilitate

optimization, the concerns of experimental design and the concerns of optimization are inextricably linked.

Future progress will depend on balancing these concerns efficiently [20].
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